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Proposed Work

A research program was proposed for the testing and implementation of advanced turbulence

models for non-equilibrium turbulent flows of aerodynamic importance that are of interest to

NASA. Turbulence models that are being developed in connection with the Office of Naval

Research ARI on Nonequilibrium Turbulence are provided for implementation and testing in

aerodynamic flows at NASA Langley Research Center. Close interactions were established with

researchers at NASA Langley RC and refinements to the models were made based on the results of

these tests. The models that have been considered include two-equation models with an

anisotropic eddy viscosity as well as full second-order closures. Three types of non-equilibrium

corrections to the models have been considered in connection with the ARI on Nonequilibrium

Turbulence: conducted for ONR

(1) Anisotropies in the turbulent dissipation rate through an analysis of the transport equation for

the tensor dissipation. The leading order contribution of this effect is through the addition of

nonlinear strain dependent terms in the modeled scalar dissipation rate equation via the production

coefficient C,_. The traditional constant value chosen for this coefficient makes it impossible to

describe both equilibrium flows with moderate strain rates and non-equilibrium flows with large

strain rates.

(2) Non-equilibrium vortex stretching in the turbulent dissipation rate equation. The commonly

used modeled transport equation for the turbulent dissipation rate is based on an equilibrium

hypothesis whereby the production of dissipation by vortex stretching is exactly counter-balanced by

the leading order part of the destruction of dissipation term. In order to describe departures from

equilibrium, unbalanced vortex stretching will be allowed for which is described by a physically

based relaxation model.

(3) Non-equilibrium pressure-strain effects. Terms that are nonlinear in the mean velocity

gradients are introduced into the model for the pressure-strain correlation through the

implementation of a relaxation time approximation to a non-equilibrium algebraic stress model that

bridges the equilibrium solution to the RDT solution for shear flows via a Pad6 approximation (see

Appendix A).

These models have the potential to lead to a new generation of Reynolds stress closures.

While, as part of the Office of Naval Research ARI on Nonequilibrium Turbulence, the models



will be tested in practical Naval Hydrodynamics flows, it would also be useful to test them in high

speed aerodynamic flows that are of interest to NASA. This forms the raison d'Etre of the present

research.

Research Accomplished

The research focused on two central issues:

(a) The development of a more robust regularization scheme for explicit algebraic stress

models which form a cornerstone of the models being developed. The previously derived

regularization scheme allowed the eddy viscosity to get too low when the mean strain rates became

large. The new regularization procedure allows the eddy viscosity to approach a sufficiently large

enough finite lower bound for numerical robustness. This has led to the better calculation of

aerodynamic flows (see Appendix A).

(b) The systematic incorporation of the effects of anisotropic dissipation into explicit

algebraic stress models. By using the algebraic anisotropic dissipation rate model of Speziale and

Gatski (1995), the explicit algebraic stress model approximation was repeated via integrity bases

methods. It led to an explicit algebraic stress model where the coefficients simply assumed

readjusted values (see Appendix B). Thus the effects of anisotropic dissipation can be now be

systematically implemented within the framework of a model that is only slightly more

computationally expensive than the K - e Model.

This research has great promise for future aerodynamic computations. Additional tests are

currently underway.
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Abstract

An explicit algebraic stress equation,

developed by Gatski and Speziale, is used in the

framework of the K-E formulation to predict
complex aerodynamic turbulent flows. The

nonequilibrium effects are modeled through

coefficients that depend nonlinearly on both
rotational and irrotational strains. The

proposed model was implemented in the ISAAC

Navier-Stokes code. Comparisons with the

experimental data are presented which clearly
demonstrate that explicit algebraic stress

models can predict the correct response to

nonequilibrium flows.

I. Introduction

Computational fluid dynamics has become

an increasingly powerful tool in the aerody-

namic design of aerospace vehicles as a result of

improvements in numerical algorithms and

computer capabilities (e.g., speed, storage).

Major future gains in efficiency are expected to

come about as massively parallel supercomputer
technology matures. However, some critical

pacing items limit the effectiveness of computa-

tional fluid dynamics in engineering. Chief

* Senior Scientist.
** Professor.

among these items is turbulence modeling.
Numerous turbulence models of varying degrees

of complexity, which can be classified as either

eddy viscosity or full Reynolds stress models,

have been proposed. Excellent reviews of turbu-

lence models have been recently provided by
both Speziale x and Wilcox. 2

Eddy viscosity models use the Boussinesq
isotropic effective viscosity concept, which as-
sumes that the turbulent stresses in the mean

momentum equation are equal to the product of

an eddy viscosity and a mean strain rate. Zero-,

one-, and two-equation models are among the

most popular eddy viscosity models for
engineering applications because of their ease of

implementation in computational fluid dynam-

ics codes. Algebraic or zero-equation models,

which assume local equilibrium of the turbulent

and mean flow, have provided reasonable

predictions for simple flows. When the turbu-

lent transport is important or the mean
conditions change abruptly, these models do not

work well. One-equation models improve the

predictions for simple near-equilibrium flows

but do not account for more complex effects on

turbulence. Two-equation models are developed

to take explicit account of the history of the

turbulence through two transport equations for
combinations of the turbulent length and time

scales. These models offer good predictions of



the characteristics and physics of simple

separated flows and flows with gradual changes

in boundary conditions. However, basic two-

equation models fail in many practical flows

because they cannot properly account for

streamline curvature, rotational strains and

buoyancy; they provide an incorrect response to

strong adverse pressure gradients; and they

cannot describe the anisotropy of turbulence. As

a result, various ad hoc modifications to these

models have been proposed to achieve the

proper response (see Lakshminarayana3). In

these modifications, effects on turbulence, such

as those due to streamline curvature, have been

directly accounted for in the eddy viscosity

expression or have been reflected indirectly in

the turbulence-model equations by modifying

the dissipation-rate equation. The improved

two-equation models predict a wider range of

flows; however, they still fail to properly capture

the physics in a broad class of flows. To

overcome some of these deficiencies, two-

equation turbulence models that are nonlinear

in the mean strain rate were proposed by

Speziale 4 and Rubinstein and Barton. 5 These

models have provided accurate predictions of

turbulence intensities. However, these models

are not consistent with full Reynolds stress

models because they have constant coefficients.

Full Reynolds stress models represent the

highest level of closure that is currently feasible

for practical calculations. These models are

superior to the two-equation models in that they

eliminate the assumption that the turbulent

stresses respond immediately to changes in the

mean strain rate. Also, they account for the

anisotropy of turbulence and body force effects

on turbulence (e.g., due to streamline curvature

and rotation) through extra production terms

that explicitly appear in the Reynolds stress

transport equation. However, models for many

unknown turbulent quantities are required.

This need is generally met by assuming that the

turbulence is locally homogeneous and in equi-

librium. Existing Reynolds stress models have

been shown to give good descriptions of two-

dimensional mean turbulent flows that are near

equilibrium. However, computer costs and

numerical stability problems that arise from the

absence of a turbulent viscosity make assess-

ments of the limitations of these models in

predicting complex flows difficult. However,

second-order closure models could be used to

derive better two-equation models because

fundamentally they are constructed on a

stronger theoretical basis than the lower level

models.

Recently, a methodology for deriving a

general nonlinear constitutive relation (or an

explicit algebraic stress equation) for the

Reynolds stress tensor from second-order

closures, has been proposed by Gatski and

Speziale,6 based on the ideas of Pope. 7 This

derivation isbased on the assumptions that the

net convection of the turbulent stresses is pro-

portional to the net convection of the turbulent

kinetic energy and that the structural parame-

ters of the turbulence are constant along a

streamline. As a result, a new generation of

non-linear two-equation models isobtained with

coefficients that depend on rotational and

irrotationalstrains. This new feature extends

the range of applicabilityof the standard two-

equation models.

Abid et al.s used the explicit algebraic

stressrelationwithin the context of the K-o) and

K-e two-equation format to predict separated

airfoilflows. The Launder, Reece and Rodi 9

pressure-strain correlation model was consid-

ered in the above study. Comparisons with the

experimental data have shown that this new

nonlinear turbulence model improves the ability

of two-equation models to account for nonequi-

librium effects. However, the Reynolds stress

anisotropieswere not well predicted.

In this paper, the algebraic stress relation

is applied within the context of the K-e two-

equation format using the Speziale, Sarkar and

Gatski I°pressure-strain correlationmodel. The

abilityof the proposed model to predictcomplex

flows which include nonequilibrium and

anisotropic effectsis assessed. Transonic flows

over two airfoilsand a wing are considered in

this study. The ISAAC Navier-Stokes code is

used tocompute the three testcases.
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II. Theoretical Analysis

For a weakly compressible turbulent flow

at high Reynolds numbers, the Reynolds stress

tensor vii =uiuj is a solution of the transport
equation n

Dri1 Jffj 3ffi 17ij_2e80--ffi-= - j' R---f+ 3

+Dir + vV2vo (1)

given that FI#j is the pressure-strain correlation,
D_ is the turbulent transport term, e is the
turbulent dissipation-rate, v is the kinematic

viscosity, _ is the mean-velocity component,

and _ is the mean density. Explicit compress-
ibility effects are neglected in Eq. (1) due to the

applicability of Markovin's hypothesis in these

weakly compressible flows.

If we contract the indices in (1), then we
obtain the transport equation for the turbulent

kinetic energy K = uiu i / 2 :

DK = p _ E + D r + vV2K (2)
Dt

given that P=-ri.(3_it3x,_
J% # ._J

production term and Dk
transport term.

is the turbulence

is the turbulent

Rodi TM proposed the idea of algebraic stress

closure, which provides algebraic equations
without solving differential equations for the

Reynolds stresses. He assumed that

Dri/ r Vii (DK_D r_vV2K) (3)Dt vV2rij-Di'j='-g'_,'-_

and

where

Dbij =0 (4)
Dt

vii -2 KSo

biJ = 2K (5)

is the Reynolds stress anisotropy. Physically,

two assumptions are made in the algebraic

Reynolds stress closures: the convection term

minus the diffusion term in the Reynolds stress

equation is proportional to the convection term
minus the diffusion term in the turbulent

kinetic energy equation and the Reynolds stress

anisotropy b0 is constant along a streamline.

The substitution of (3) and (4) into (1)

yields the following algebraic stress equation:

17o

where

and

s'J-- t, j -C ) (7)

2C% ) (8)

are the mean-rate-of-strain tensor and mean-

vorticity tensor, respectively.

Given a pressure-strain-correlation model,
(6) provides an implicit algebraic equation for

the determination of the Reynolds stress r0"
Computations that use this model have shown
that stable numerical solutions can be difficult

to obtain. Hence, an explicit algebraic stress

equation which is a mathematically consistent

representation of (6) is preferable.

Pope 7 developed a methodology for obtain-

ing explicit algebraic stress equations by using a
tensorial polynomial expansion in the integrity

basis. 5 Gatski and Speziale 6 used this method

to derive an explicit algebraic stress equation for
two- and three-dimensional turbulent flows. In

order to generalize their results, they applied
their algebraic stress representation to the

general class of pressure-strain correlation

models for Hij which are linear in the

anisotropic tensor bij. The general linear form
of l-lij is

3



FIij f
= -C_eb_j + C2KSu + O3Ktb_Sjk + b_kS_Y

The explicit nonlinear constitutive equation,

derived by Gatski and Speziale, 6 is then given

after regularization by

(lO)

with

p, = _C_ -_ (11)

3(1+ 7/2)o_i

C; = 3+772 +6_2_2 +642 (12)

(](2 42 iT3: (13)

where _ is the mean density and (n=e/K is

the specific dissipation rate. The constants in

(11)-(13) are given by

4
as = (2 2 g2

-C3) T (14)

_3= (2- c,)5 _,

1 (16)
as =(2-C3)g' g = C--_I+C s - 1

2

To avoid numerical problems in the initial

stages of the computation or in the free-stream

region, a modified form of C_ is used

+¢)
C*_ =a 13+72 +6_2_2 +642 +z/6 +_6 (17)

which isequivalent to Eq. (12) to order 174and

_4. Relation (17) does not change the value of

C_ near equilibrium conditions,but limits C_ to

a small non-zero value (= 0.2aI)for high values

of 11or _ to avoid numerical instabilities.In the

present study, the pressure-strain-correlation

model of Speziale, Sarkar, and Gatski I° is

considered; the coefficientsare:

C1 =6.8, C 2 =0.36, C3 = 1.25,

C 4 =0.40, Cs= 1.88 (18)

The nonlinear constitutive equation (I0)

must be solved in conjunction with the following

modeled transport equations.

_oKp--_7='_P-'_e+ llt "_-'_'k)_j j (19)

and

C 2

_De .-. _ e p_cE ,_f._K

2

given that Ptt= C_p _ and C_(= 0.081) is the

value of C_ in the logarithmic layer. The

coefficients of the model are

a k = 1.0, _ = 0.40, Ce2 = 1.83, Cel = 1.44

and

(7 e =

[f = 1- ex - , y+ = pyu_.._

(21)

(22)

given that u, is the shear velocity and y is

normal to the wall. Note that new model can be

integrated directly to the wall without adding a

damping to the eddy viscosity. The function f is

introduced to remove the singularity in the

dissipation rate equation at the wall.

At the wall, the boundary conditions for K

and e are



K = 0, e = 2v (23)

ITI. Results and Discussion

The calculations to be presented were done
with the three-dimensional Navier-Stokes

ISAAC code, 1_ which uses a second-order accu-

rate finite-volume scheme. The convective

terms are discretized with an upwind scheme

that is based on Roe's flux-difference splitting

method. All viscous terms are centrally differ-
enced. The equations are integrated in time

with an implicit, spatially split approximate-
factorization scheme.

The performance of the explicit algebraic
turbulence model (hereafter referred to as

EASM) was evaluated for the flat-plate turbu-

lent boundary layer at a zero-pressure gradient.
As expected (the results are not shown here),

the turbulence model yielded good predictions
for the mean-velocity profiles and skin-friction

coefficients. Although some turbulence proper-

ties near the wall are not captured (i.e., the peak
of the turbulent kinetic energy), the algebraic

stress model does give accurate results away

from the buffer layer (i.e., y+ > 30). Remember
that the algebraic stress model can be inte-

grated directly to a solid boundary with no

damping function in the turbulent eddy

viscosity.

The fn-st two test cases to be considered are

the RAE 2822 airfoil flows (cases 9 and 10),

which were tested by Cooke et al. 14 The airfoil

has a maximum thickness of 12.1 percent c and

a leading-edge radius of 0.827 percent c (c is the
chord ofthe airfoil). The grid used is a 257x97 C

mesh with 177 points on the airfoil, and a

minimum spacing at the wall of 0.932×10-%.

The outer boundary extent is approximately 18c,
and transition is assumed at 3 percent c. For
the case 9, the conditions include a Mach

number M. = 0.73, an angle of attack a = 2.8 °,
and a Reynolds number Re = 6.5)<106. This case

contains no separated flow. For the case 10, the

conditions include a Mach number Moo = 0.75,

an angle of attack a = 2.72, and a Reynolds

number Re = 6.2x106. This case involves sepa-
ration based on visual surface streamline

patterns. However, there are no skin-friction

coefficient data indicating separation. Hence,

case 10 is considered as an incipiently separated

flow and, therefore, is more challenging than the
previous case.

Figures 1 and 2 compare the surface

pressure and skin-friction coefficients computed

along the airfoil surface with the experimental
data for case 9. It is clear that the explicit alge-

braic stress model provides a good representa-

tion of the pressure over most of the airfoil.

However, the turbulence model over predicts the
skin-friction coefficient downstream of the

shock. This deficiency results from the tendency
of the models based on K-e formulation to

predict excessive near-wall levels of turbulent

length scale in the presence of an adverse pres-

sure gradient, which leads to high values of the
eddy-viscosity. A modification of the dissipation

equation is required in order to improve the
response of the algebraic stress model to adverse

pressure-gradient effects.

In order to demonstrate the improvement
resulting from the use of the EASM model for

non-equilibrium flows, comparisons between the
results obtained by the EASM model and the

Speziale, Abid and Anderson K-e model 15

(hereafter referred to as SAA) were performed

(Figures 3-10). From Figure 4, it appears

clearly that neither turbulence model predicts

separation. This is reflected by the high level of
the skin-friction coefficient, downstream from

the shock. This probably is a result of the

inability of the length scale equation to provide

proper response to adverse pressure gradients.

To date, several modifications to the dissipation
equation for separation do not seem to be

successful. On the other hand, the EASM model

predicts the shock location better than the SAA

model, although slightly downstream of the

experimental shock location (see Figure 3). This

results from the prediction by the EASM of

lower values of eddy viscosity in the inner part

of the boundary layer, therefore, lower values of

the turbulent kinetic energy (see Figure 7).

Comparison of the computed and measured

5



velocity profiles further support the latter
observation.An additional finding that can be

inferred from the above comparison is that the

EASM model gives a realistic representation of

the normal stresses (see Figures 8-10).

The third test case to be considered is the

ONERA M6 wing at Mach number of 0.8447, an

angle of attack a of 5.06 and a Reynolds number

of 11.7×106 based on the mean aerodynamic

chord. TM A C-O grid, used in this study has

193×49×33 points in the streamwise, normal
and spanwise direction. The minimum normal

spacing over the wing of 0.000015 Croot and a

distance from the wing to the outer boundary of

at least 7.95 Croot . No wind tunnel test correc-
tions are employed for this case.

Figure 11 shows a comparison of the

surface pressure distributions with the experi-

mental data at four different spanwise locations

2y/B. It is clear from this figure, that the
predicted shock location and the surface

pressure distributions by the EASM model are
in good agreement with the experimental data,

and similar to the results reported in [17] for the

Johnson-King model, which has been highly
tuned for airfoil flows.

Conclusions

A study of an explicit algebraic stress
model, used in the framework of the K-c

formulation for separated turbulent flows, has
been conducted. This new generation of two-

equation models, which is derived from second-

order closures, has been tested against three

test cases, two of which involve separation. Two

major findings have been made in this study:
explicit algebraic stress models have shown

some improvement over the standard two-

equation models because of their ability to

account for nonequilibrium effects and to give a

realistic representation of the anisotropy of the
turbulence. However, this improvement is still

limited by the dissipation rate equation which

fails to respond properly to adverse pressure
gradients. A major research effort to correct

this deficiency is currently underway.

Acknowledgements

The firstand secondauthors(RA and JHM)

would liketo thank NASA Langley Research

Center forsupportunder contractsNAS1-20059

and NAS1-19831. The fourth author (CGS)

acknowledges the supportofthe OfficeofNaval

Research under Grant No. N00014-94-1-0088

(Dr.L.P.PurteU,Program Officer).

References

ISpeziale,C. G., "Analyticalmethods for the

development of Reynolds stressclosures in

turbulence," Ann. Rev. Fluid Mech. 23, 107-157,
1991.

2Wilcox, D. C., Turbulence Modeling for CFD,

DCW Industries, Inc., LaCanada, CA, 1993.

3Lakshminarayana, B., "Turbulence modelling

for complex flows," ALkA-85-1652, 1985.

4Speziale, C. G., "On nonlinear K-g and

K- emodels of turbulence," J. Fluid Mech. 178,
459, 1987.

5Rubinstein, R., and Barton, J. M., "Nonlinear

Reynolds stress models and the normalization

group," Phys. Fluids A2, 1472, 1990.

eGatski, T. B., and Speziale, C. G., "On explicit

algebraic stress models for complex turbulent
flows,_ J. Fluid Mech. 254, 59-78, 1993.

7Pope, S. B., "A more general effective viscosity
hypothesis," J. Fluid Mech. 72,331-340, 1975.

SAbid, R., Rumsey, C., and Gatski, T. B.,

"Prediction of Non-Equilibrium Turbulent Flows

with Explicit Algebraic Stress Models," A/AA J.

33(11), Nov. 1995.

_Launder, B. E., Reece, G. J., and Rodi, W.,

_Progress in the development of a Reynolds

stress turbulence closure," J. Fluid Mech. 68,
537-566, 1975.

l°Speziale, C. G., Sarkar, S., and Gatski, T. B.,

_Modeling the pressure-strain correlation of

turbulence: an invariant dynamical system
approach, _ J. Fluid Mech. 227, 245-272, 1991.

6



11Hinze,J.O.,Turbulence, McGraw-Hill, 1975.

12Rodi, W., _A new algebraic relation for

calculating the Reynolds stresses, _ Z. Angew.

Math Mech. 56, T219-T221, 1976.

lSMorrison, J. H., _A compressible Navier-Stokes

solver with two-equation and Reynolds stress
turbulence closure models," NASA CR4440, May

1992.

14Cooke, P., McDonald, M., and Firmin, M.,

_Airfoil RAE2822--pressure distributions and

boundary layer wake measurements, _ AGARD
AR-138, 1979.

15Speziale, C. G., Abid, R., and Anderson, E. C.,
"Critical evaluation of two-equation models for

near-wall turbulence," A/AA J. 30(2), 324-331,

1992.

leSchmitt, V. and Charpin, F., _Pressure distri-
bution on the ONERA M6 wing at transonic

Mach numbers," AGARD-AR-138, May 1979.

lVRumsey, C. and Vatsa, V. N., _A comparison of

the predictive capabilities of several turbulence
models using upwind and central-difference

computer codes," AIAA 93-0192.

7



-1.5

-1.0

-0.5

0.5 c

1.0

) 0

O Experiment

EASM

1.5 _ ' I w

0.0 0.2 0.4 0.6 0.8 1.0

x/c

Figure 1: Surface pressure distributions for RAE 2822 airfoil (Case 9)

0.005

0.004

0.003

d"

O. 002

0.001

o Experiment

0 0

EA SM

o o o 0

0.000 , I
0.0 0.2 0.4 0.6 0.8

xflc

.0

Figure 2: Skin friction distributions for RAE 2822 airfoil (Case 9)



-1.5

-1.0

-0.5,

0.0

0.5

1.0

) 0

o Experiment

EASM

SAA

1.5 I t

0.0 0.2 0.4 0.6 0.8 1.0

x/c

Figure 3: Surface pressure distributions for RAE 2822 airfoil (Case 10)

0.005

0.004

0.003

d"

O. 002

0.001

0.000
0.0

0 Experiment

EA SM

SAA

-_i __i

©

i i I

0.2 0.4 0.6 0.8 .0

x/e

Figure 4: Skin friction distributions for RAE 2822 airfoil (Case 10)



0.030

x/c

O. O25 ©

O. 020

0.015

0.010

0.005

0.000
0.0

= 0.498

Experff, ment

-- EASM

-- -- SAA

!

0.4 0.8

u/u ®

0.030

0.025

O. 020

0.010

0,005

z/c = 0.65
0

oj
O/

0.4 0.8

u/u®

O. 030

0.025

O. 020

0.015

0.010

0.005

0.000 0.000
1.2 0.0 1.2 0.0 1.2

z/c = 0.75_

0

0

8

?/

0.4 0.8

_U®

Figure 5: Comparison of mean velocity profiles for RAE 2822 airfoil (Case 10)

Figure 6:

0.012

x/c = 0.65

O. 010

X

0.008

8%

['_ 0.006 \

I / - EASM '\\0.004 __ i x

0.002/ SAA
0.000 ' ' _ '

0.000 0.004 0.008 0.012 0.016

fl/c

Comparison of turbulent shear stress distributions for RAE 2822 airfoil (Case 10)

10



Figure 7:

0.035

0.030 z/c = 0.65

/,,\

O.020
/

O. 010 SAA kQ ,

\,

0.005
0.000 ' r ,

0.000 0.004 0.008 0.012 0.016

y/c

Comparison of turbulent kinetic energy distributions for RAE 2822 airfoil

(Case 10)

Figure 8:

0.035

0.030

0.025

_8 0.020

0.015

0.010

0.005

\

/ EASM
SAA

0.000 '
0.000 0.004 0.008

y/c

x/c = 0.65

\

\\

,
0.012 0.016

B

Comparison of u 2 normal stress distributions for RAE 2822 airfoil (Case 10)

11



0.035

0.030

O. 025

_ 0.020

o.o15

/
\/

/ \

x/c = 0.65

/ \

/ \

0.010 / \

0.005

0.000 i
0.000 0.004 0.008 0.012 0.0 6

y/c

Figure 9: Comparison of v _ normal stress distributions for RAE 2822 airfoil (Case 10)

0.035

0.030

0.025

_g 0.020

__ 0.015

0.010

0.005

0.000

x/c = 0.65

f \

SAA

L _

0.000 0.004 0.008 0.012 0.016

y/C

Figure 10: Comparison of w 2 normal stress distributions for RAE 2822 airfoil 'Case 10)

12



Q,

-1.5

-1.0

-0.5

O.

O.

.

1

2y/B=o.z

5 (

iI I I I i

0.0 0.4 0.8

X//C

-1.5

-1.0

-0.5

0.0

0.5

1.0

I J I I1.5
0.0 0.4 0.8

¢

-1.5

-1.

O.

O.

O,

1.0

2u/B=o. 65
0

5

1.5 _ i r r
0.0 0.4 0.8

xJc

-1.5

-1.0 _ 2y/B=0.80

-0.50.0

O. 5 0 Experiment

EA SM

1.0

1.5 l ' L I
0.0 0.4 0.8

x/c

Figure 11: Surface pressure distributions for ONERA M6 wing

13



APPENDIX B



AIAA J., Vol. 34, pp. 2186-2189 (1996).

AN EXPLICIT ALGEBRAIC STRESS MODEL OF TURBULENCE
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1. INTRODUCTION

Turbulent flows near solid boundaries - or at low turbulence Reynolds numbers - can

exhibit significant anisotropies in the turbulent dissipation rate 1. Nevertheless, Reynolds

stress turbulence closures are routinely formulated that neglect such effects by invoking the

Kolmogorov assumption of local isotropy 2. Recently, however, attempts have been made

to extend full Reynolds stress turbulence closures to incorporate the effects of anisotropic

dissipation (see Speziale, Raj and Gatski 3, Speziale and Gatski 4, Oberlack 5 and HallMick et

al.6). These more sophisticated Reynolds stress turbulence closures can involve the solution

of up to twelve additional transport equations. As such, most of these models are not

currently feasible for the solution of complex turbulent flows in an engineering setting.

During the past few years, explicit algebraic stress models have been developed that are

formally consistent with full second-order closures in the limit of homogeneous turbulence in

equilibrium (see Gatski and Spezialer). These models allow for the solution of complex tur-

bulent flows with a substantially reduced level of computation compared to full second-order

closures_ since they constitute two-equation models 7's. The purpose of the present note is to

show how the effects of anisotropic dissipation can be systematically incorporated into these

explicit algebraic stress models by a simple readjustment of the coefficients. For homoge-

neous turbulent flows that are close to equilibrium, it will be shown that the results obtained

from such models are virtually indistinguishable from those obtained from a full second-order

closure model with the anisotropic dissipation rate model of Speziale and Gatski 4. All of

this extra turbulence physics is incorporated within the framework of a two-equation model

that is not much more computationally expensive to implement than the standard K - e

model.

*Research Assistant

**Professor and Member of AIAA



2. THEORETICAL BACKGROUND

We will consider incompressible turbulent flows where the velocity vi and kinematic

pressure P are decomposed, respectively, into ensemble mean and fluctuating parts as follows:

m

vi=_i+ul, P=P+p. (1)

In homogeneous turbulence, where all higher-order correlations are spatially uniform, the

Reynolds stress tensor vii = uiuj satisfies the transport equation 9

0_j 0_i
7"ij : --Tik _k -- Tjk _ nt- IIij -- _ij, (2)

where

Oui Ouj .
n,j - p( _- +

uaj

gij ::- 2ttOUi ¢gUj

Ozk Ozk

are, respectively, the pressure-strain correlation and the dissipation rate tensor. Thus, in

homogeneous turbulence, only IIij and eij need to be modeled in order to achieve closure.

Speziale, Sarkar and Gatski l° showed that, for two-dimensional mean turbulent flows in

equilibrium, the commonly used hierarchy of pressure-strain models simplifies to:

IIij -Clebij + C2¢(bikbkj 1= -- 5bklbkt6ij)

where

-- B __

+C3KSij + C4K(bikSjk + bjkSik

2 --

-5bk_Sk_6ij) + CsK(b_k_jk + bjk@k)

(3)

_,j = 1( O_i O_j. 10-_i O_j rij - ]Kgij
2 + = &,), b,j-

are, respectively, the mean rate of strain tensor, the mean vorticity tensor, and the Reynolds

1
stress anisotropy tensor; K - 5vii is the turbulent kinetic energy. The SSG model is a

simple extension of (3) that is valid for moderate departures from equilibrium. It has been

found that the nonlinear return term containing 6'2 can be neglected without introducing an

appreciable error, z'l° With the choice of constants

Ci = 6.80, C2 = O, Ca = 0.36, C4 = 1.25, C5 = 0.40,

in (3), excellent equilibrium values are obtained for the benchmark case of homogeneous

shear flow. We refer to this as the linearized, equilibrium form of the SSG model.



The Kolmogorov assumption of local isotropy is typically invoked wherein it is assumed

that2, 9

(4)

It is generally accepted that
1

where e = _gii is the (scalar) turbulent dissipation rate.

homogeneous turbulent flows, with constant mean velocity gradients, achieve equilibrium

values for bij that are largely independent of the initial conditions. This is characterized by

or, equivalently,

÷,j = 2(_' - _)b,_ + 3(_ - _)6,j (5)

where T' = -rOO_i/Oz j is the turbulence production. The substitution of (3) - (5) into

(2) yields an implicit algebraic system that can be solved by integrity bases methods. This

solution - which has come to be referred to as an explicit algebraic stress model (ASM) - is

given in the equilibrium limit of homogeneous turbulence by: T

where

K2 -to = 2K6is - 3 ---_-SiS3 3 -- 2r/2 -4- 6_ 2 aO

K3 __

K3(-SikSkj _SklSkl_ijl ]_ 0_2 -_- m

oo:

10t 2 K (SijSij)I/2,_/-- 2ao

1

(} )-,g= _t 1 + ---1
¢

_o g

(6)

(7)

and T'/e assumes its constant equilibrium value. When far from equilibrium, a singularity

may arise since the denominator (3 - 2_/2 + 6_ 2) in (6) can vanish for sufficiently high strain

rates _/. Gatski and Speziale 7 introduced a regularized expression for 3/(3- 2r/2+ 6_ 2)

which eliminated the singular behavior. However, that model is not formally valid for non-

equilibrium turbulence -- particularly in the rapid distortion limit.



Speziale and Xu 11 later introduced a formal Padd approximation that built in some

limited consistency with Rapid Distortion Theory (RDT) for homogeneous shear flow. They

rewrote (6) in the form:

* K2-- "K3 - -- -- -- K3 _,{SikSkj - -1SktSkl6ij7"ij= 2-K6ii-a°-e-SiJ-a'-_(Sikwki+Sjkwki)3 + a2"--e2 3 ) (8)

and made use of the fact that in the short-time RDT solution (?/-, co), K/Ko remains of

order one. This implies that
1

a 0 _ - (9)
?/

It is obvious that the equilibrium model (6) violates this constraint (0/_ ~ 1/?/5 instead).

Speziale and Xu 11 then introduced a Padd approximation and obtained the expression:

5?/2(1 ÷ 2_2)(1 + 6?/5) ÷

0/o = (1 ÷ 2_2)(1 ÷ 2_ 2 ÷ ?/2 ÷ 6f_0?/6) 0/0 (10)

(with the constant 80 _ 7) to ensure asymptotic consistency and the proper energy growth

rate in line with the RDT data. By a comparable Pad6 approximation, they also derived

the expression

27/5
, (i+ 2U)(I+ ?/4)+ 5 (ii)

for i = 1, 2 (with f_l _ 6 and _2 _ 4), in order to establish consistency with the approach to a

one component turbulence in the RDT limit of homogeneous shear flow. For near-equilibrium

turbulent flows, (8) with (10) - (11) yields results that are virtually indistinguishable from

(6).

3. ANISOTROPIC DISSIPATION

In a recent study, Speziale and Gatski 4 derived a modeled transport equation for eij

which is valid for homogeneous turbulence. By invoking the equilibrium limit where

d,j =0 (12)

for the anisotropy of dissipation dij, they obtained an algebraic system -- analogous to that

for algebraic stress models -- which was solved by integrity bases methods. This ultimately

led to the algebraic model: 4

C_s + 7_/e - 1

300/ 2 _T2

+ _¥ _fi : i_,_kj - _Sm,Sm. ,_)}
(i3)



where

dij --

2
Eij -- _E_ij

26

is the anisotropy of dissipation and r - K/e is the turbulent time scale. Here,

(14)

and

, ( )2c., = 15(c_5 + _,/g- 1){1 + 2T2 c.5 + _,/g - 1 _m.'m.

2
I _3_ _ Sm.Sm.)_ 1 (15)_T 2 [ 15Ot 1
\ c_ + :p/_ - 1

C,5 = 5.8, a3 = 0.6

are constants. This then yields the full dissipation rate tensor since, by definition,

2 6
Eij =-. _E ij -_ 2edij. (16)

After introducing the anisotropic dissipation model for di3 in (2), we can derive an alge-

braic stress model with anisotropic dissipation. Again, making use of the fact that bij = 0

for equilibrium turbulent flows, the Reynolds stress transport equation (2) then reduces to:

2 b -- 4 K-
2(T' - g)bij = -2g(bik-Sjk + bjkSik - -_ ,.,,_Sm,,gij) - -_ Sij

--2K(bik_jk + bjk@k) + IIij - 2cdij. (17)

The explicit ASM incorporating anisotropic dissipation - which is obtained from the solution

of (17) after (3) and (13) are implemented - is of the same general tensorial form as (6):

bij -_-G(1)T/0 ) -Jr-e(2)T(} ) -_-G(3)Ti_ 3) (18)

where

Ti_ 1)= Sij, T(} )= -Sik_kj + S-jk_ki

1

T}/) = SikSki - -_S,,,,,S,,,,,,6ij

are the integrity bases. The solution is given by

1 _2 A

1 -1-A,+5,1 3+2_2A2"

G (1) = _ao'r 1 - _7/2 + 2_ 2

1 2[-1-A1-A2+½_I2(A3+2A2)]G (2) = _1 T ....
1 - _r/2 + 2_ 2



where

G(3) = _a2T2 [ 2-A3

A 1 -

+ 2A1- 2_2(A3 + 2A2)]

2721 - 5 + 2_ 2 J

2

A2 = g(_ - C3)(2 - Ch)

2

A3 = g(_ _ c31(2 - c,)

Equivalently, from (18) we have

4 C3
3

O_s+E-1

C_5 + k _ 1

(19)

3.14 16

= -

for homogeneous turbulence. Here

c:1 = 1.26+

where

2(1 + a) C_5 + 2C.7/2 - 1 ]

15C_, (C_s + 2C_p? 2 - 1)2 + 2f_12_2_ ]fl_?2 J

transport equation for the turbulent dissipation rate that is of the form 4

(21)

(22)

Tij = 2-K6'J3 -_- 2K(G(1)Ti(1)'J -_- G(2)Ti_2) -{- G(3) Ti_.3)).. (20)

which is obviously of the same tensorial form as (6) -- only the coefficients are different.

27]2The factor 1/(1 - 5 + 2_ 2) in (19) can be regularized in the same general way as dis-

cussed earlier to ensure the correct asymptotic behavior in the RDT limit. The standard

explicit ASM given in (6) is then recovered in the limit as C,_ (and hence, A1, A2, and A3)

-* 0. Anisotropies in the dissipation rate are then accounted for simply through a systematic

readjustment of the coefficients.

4. RESULTS AND DISCUSSION

The anisotropic dissipation rate model has been tested in detail by Speziale and GatskP

within the context of a full second-order closure, which will not be repeated here. Our

purpose in this note is to simply demonstrate that - for homogeneous turbulent flows close

to equilibrium - the new explicit ASM with anisotropic dissipation yields results that are

indistinguishable from the full second-order closure, with anisotropic dissipation, on which

it is based.

The new explicit ASM with anisotropic dissipation derived herein is solved with a modeled



7 1 15 1
= + = 11

and Cv and C_2 are constants that assume the approximate values of 0.09 and 1.83, respec-

tively. In (22), _ - (SijS_j)l/2r and _ - (W_j_j)l/2r. The effects of anisotropic dissipation

are rigorously accounted for in (21) through the variable coefficient C* 1. For inhomogeneous

turbulent flows, a gradient transport term of the standard form

)

is added to the r.h.s, of (21) to account for turbulent diffusion.

In order to demonstrate the ability of the new model to properly capture the physics of

the more complicated full second-order closure with anisotropic dissipation, we will present

a simple example of a benchmark turbulent flow. In Table 1, we compare the equilibrium

results of the new explicit ASM for homogeneous shear flow with the predictions of the

linearized SSG second-order closure incorporating the anisotropic dissipation rate model of

Speziale and Gatski 4. These calculations were conducted with a fourth-order accurate Runge-

Kutta numerical integration scheme. It is clear from these calculations that the new explicit

ASM yields results that are virtually identical to the results of the full second-order closure

with anlsotropic dissipation and compare favorably with the DNS results of Rogers, Moin

and Reynolds 12. This definitively demonstrates the power of the new model to yield results

that are indistinguishable from a full second-order closure -- with anisotropic dissipation

-- for turbulent flows that are close to equilibrium. All of this at a small fraction of the

computer costs. While the effects of anisotropic dissipation are not that significant for this

case, they can be important in other flows of engineering interest as alluded to earlier. We

consider this to be a highly promising new approach for such flows that can have important

engineering applications and, thus, warrants further study.
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Equilibrium
Values

hi!

512

522

533

SK/¢

Explicit

ASM

0.204

-0.150

-0.148

-0.056

5.98

Full

Closure

0.205

-0.150

-0.147

-0.058

5.96

DNS

0.215

-0.158

-0.153

-0.062

5.70

Table 1. Equilibrium values for homogeneous shear flow. Comparison of the new explicit

ASM incorporating anisotropic dissipation with the DNS of Rogers, Moin and Reynolds 12

and a full Reynolds stress closure with anisotropic dissipation (containing the linearized SSG

second-order closure and the anisotropic dissipation rate model of Speziale and Gatski4).


